A Simulation Tool for Market-Based On-Demand Transport

Update 2/11/2016: At present, there is new development of the testbed. If you are interested in specific features, you should contact Michal Čap.

A key challenge in understanding market-based on-demand transport services is that it is not just a local problem; i.e., the behavior of an individual market. Since there are usually a number of allocations going on at the same time and individual markets are changing over time another approach is required. In fact, a rigorous evaluation requires a study of how the on-demand transport interacts with the underlying transportation network and even other dynamics of the city as we alluded to in our working paper here.

The field of multiagent systems provides a good framework to study how markets behave when they are embedded in transportation networks. Within this framework, drivers, passengers and even providers are modeled as autonomous agents. This means that each driver, passenger and provider makes its own decisions based on their own preferences and the information that is available to them. Using the multiagent systems framework allows us to capture differences in the preferences of individual drivers, passengers and providers and also competition between them.

In recent papers (see here and our preprint here),  we studied how the mechanism performed on in the Hague with a realistic demand profile for passenger requests. The basis of our network-scale evaluation was a simulation tool: the mobility services testbed. This simulation tool was developed by Michal Certicky and Michal Jakob at the Czech Technical University in Prague.

The mobility services testbed provides an easy way of implementing different market mechanisms in the context of on-demand transport. You can get it from github here.

For an overview of other aspects of mechanisms for on-demand transport, see these posts:

Advertisements

Market-Based On-Demand Transport

If you are a company providing or a municipality supporting  on-demand transport services, there is an important decision that you must make: what should be the structure of the service? By structure, I mean how drivers and passengers can interact, or how payments are made. For instance, traditional taxi services differ in their structure from providers such as Uber.

In an earlier working paper (available here) and the post here, I discussed the differences between the main classes of on-demand transport services: hackney carriage; dispatcher; dial-a-ride; and market-based. However, the classification was limited in that it did not distinguish easily between services within a given class.

With the rise in market-based on-demand transport services (e.g., Uber), there is now a need to understand the different ways that these services can operate. And this is what I intend to describe here.

Continue reading

Local to global… and back again

Recently, I have had some reason to reflect on the perspective that I adopt within my research. Here, I want to explore these thoughts further.

A one-line summary of my approach could be: “local to global and back again”. The sub-text would then read: “… and implications for system design”. Of course, these could possibly be some of the most overloaded words in (technical) English literature, so it is worth elaborating.

Continue reading